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We study Anderson orthogonality catastrophe in mesoscopic systems, in particular, in ballistic quantum dots
with integrable hard-wall confinement potential. Mesoscopic fluctuations lead to a broad distribution of Ander-
son many-particle overlaps that we investigate for rectangular, circular, and half-circular quantum dots. We
compare our results with those previously obtained for chaotic systems. We find an overall weak dependence
of the overlap probability distributions on the system geometry that is, however, more pronounced in the
presence of a magnetic field. The existence of level degeneracies, a characteristics of many regular systems,
crucially alters the distribution of Anderson overlaps that gain more weight on smaller values. For the twofold
degenerate levels of circular quantum dots, we find a double-peak structure of the overlap distribution that we
can analytically understand. The double-peak structure disappears gradually as a magnetic control field is
switched on. We extent the analytical investigation of this qualitatively new behavior to the general g-fold

degenerate case.
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I. INTRODUCTION

Many-body effects have been a key interest in condensed-
matter physics for several decades. With the increasing ver-
satility in fabricating and measuring mesoscopic and nano-
scopic devices, many-body physics in these samples receives
growing interest.' Anderson orthogonality catastrophe
(AOC) is a generic many-body effect that arises when a
many-electron system responds to a sudden and localized
perturbation, such as a suddenly appearing core hole during
the x-ray excitation of a core electron. In bulk metals, it
refers to the vanishing of the overlap between the many-body
ground states before and after the perturbation is applied.*>
AOC is one of the many-body responses that lead to Fermi-
edge singularities in the x-ray edge problem.%’ Orthogonality
catastrophe in the mesoscopic regime was studied in the con-
text of parametric random matrices,® of finite conductors
with disorder’ as well as for chaotic quantum dots and
nanoparticles,>!? parabolic quantum dots,!" and graphene.!?

In the present paper, we discuss AOC in ballistic mesos-
copic systems and compare regular [rectangular and
(half)circular] to generic chaotic quantum dots, thereby fo-
cusing on a possible geometry dependence of the AOC and
the role of level degeneracies. In the mesoscopic case, the
finite number of particles generally yields finite, nonvanish-
ing AOC overlaps,®~'%!3 in contrast to the metallic case. The
presence of mesoscopic fluctuations leads to a broad distri-
bution of Anderson overlaps that, furthermore, depends on
the number of particles in the system. We shall see that the
presence of level degeneracies, an specific property of highly
symmetric mesoscopic systems, such as the circular and
square billiards, that contrasts both the metallic and the ge-
neric chaotic case, strongly modifies the overlap distribution:
Yet another example that the mesoscopic regime gives rise to
qualitatively new behavior, here in AOC physics.

One purpose of this study is to investigate a possible ge-
ometry dependence of the AOC response that reflects the
dynamical properties of the quantum dot, i.e., regular (inte-
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grable) or chaotic dynamics of the classical counterpart of
the quantized system. Such a dependence was seen in the
weak-localization response in magnetotransport through a
circular (regular) and stadium-shaped (chaotic) ballistic
quantum dot.'*!> To this end we discuss the overlap distri-
butions of several regular quantum dot geometries and com-
pare them to the previously studied chaotic case.!” Whereas
we find that overlap distributions of rectangular, half-
circular, and generic chaotic quantum dots resemble each
other to a large extent, the difference between overlap distri-
butions of circular and generic chaotic quantum dots in the
presence of a magnetic field is more pronounced.

The paper is organized as follows. In Sec. II, we introduce
ballistic quantum dot model systems: rectangular and (half-)
circular quantum billiards, and list their single-particle wave
functions and energy spectra. The circular billiards is also
treated in the presence of a magnetic field in order to allow
one to gradually separate degenerate levels by an external
control field. In Sec. III, we introduce the model of a local-
ized, or rank one, potential, describe the calculation of the
many-particle overlap and discuss the treatment of twofold
degenerate energy levels using the circular billiards as an
example. In Sec. IV, we present and compare distributions of
Anderson overlaps of regular and chaotic quantum billiards
and summarize our results in Sec. V. Finally, an extension of
the Anderson overlap treatment in the general case of g-fold
degenerate levels is given in Appendix A. A systematic study
of mean values of the Anderson overlap in dependence on
the system confinement and perturbation strength is included
in Appendix B.

II. BRIEF SUMMARY OF INTEGRABLE BALLISTIC
QUANTUM DOT MODELS

We consider two-dimensional electronic quantum dots
with integrable hard-wall confinement potentials, namely,
rectangular, circular, and half-circular billiards as well as cir-
cular billiards in the presence of a magnetic field. Except for
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the circular billiards with magnetic field that is treated in
detail in Ref. 16, the models are discussed in common text
books.!” We summarize single-particle wave functions and
energy spectra that solve an effective mass Schrodinger
equation for noninteracting spinless electrons.

Rectangular billiards with side lengths L; and L, are
characterized by an aspect ratio L,/ L2=\r’;. Those with an
irrational « possess a nondegenerate energy spectrum. If
not otherwise stated, we take « as the Golden ratio,
a=(1+15)/2. Eigenenergies and eigenfunctions are given
by

eum=E(n*+am?), nm=1273, ..., (1)
2 X
©pmlx,y) = ,—sin<n77—>sin(m7rl> (2)
VLle 1 L2

with E, =A%/ (2m*L%) and the effective mass m”.

In the case of the circular billiards with radius R, the
energy eigenvalue problem and the eigenvalue problem of
the angular momentum z—component can be solved simul-
taneously. Energy levels and wave functions, labeled by the

angular momentum quantum number m=0, =1, *2,..., are
1 imY r
gom,n(r’ 19) = ’/—8 Nm,n‘]\m| p\m\n_ ’ (3)
N2 R
2
Emn = Ecp\m\,n 4)

with E.=A%/(2m*R?) and the normalization constant of the
radial wave function N,,,,,,:VE/ [RJ}nf+1(Pjm|.n)]. The index
n=0,1,2,... labels the roots pj,, , of J},, the Bessel function
of the first kind of order |m|, and also fixes the number n of
radial nodes. Energy levels ¢, with |m|>0 are twofold de-
generate. Instead of this classification, energy eigenstates can
be taken as eigenfunctions of the squared angular momentum
z component and as symmetric (s) or antisymmetric (a) func-
tions with respect to the parity operation 0 — —9

@yl (r,9)

1 r
,—_cos(mﬂ) Nm n]ml(pmln—) m=0,1,2, ey
\r’fn’ ’ ’ R

1 . r
?sln(mﬂ) Nm”’Jm|<pm|‘"1_€> m=1,2,3,....

N
(5)

The antisymmetric states ¢ , with a proper normaliza-
tion, provide a complete set of eigenfunctions of the half-
circular billiards. In presence of a static magnetic field

é:Bé’Z, perpendicular to the plane of the circular quantum
dot, the kinetic momentum is given by —ifiV—gA(F), g=—e.
In the symmetric gauge, A(¥)=(1/2)Bré, the ansatz

1 )
G, 9) = =—=—¢""R,,,(r) (6)

N &7 m,n

with m=0,*=1,=%2,... and
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Ry n(2) = €% 2h,, (2) (7)

with z=r2/ (212) and the magnetic length [,=\#/(eB) leads to
the confluent hypergeometric differential equation for
h,, 2(z). Solutions are

enn |
hm,n(z)=1F1<— Py +5(m+|rﬂ|+1);|m|+1;z> (8)

Cc
with | F, being a confluent hypergeometric function'® and the

cyclotron frequency w,.=eB/m*. Levels are determined by
Dirichlet boundary conditions 0=R,, ,(R), i.e.,

8]
0= 1F1<_ o,

c

+%(m+|m|+1);m|+l;z0) 9)
with zy=R?/(2[}). We solve Eq. (9) numerically by a path-
following method starting from B=0*. The procedure allows
to keep track of all levels within a specified energy range.
The normalization of the radial wave function C, , has to
be calculated numerically. To illustrate the strength of the
magnetic flux density B=(h/e)n,zo/M through a quantum
dot with M particles, we use a typical electron density
n,=2.8X 10" m=2 per spin orientation.

III. ANDERSON OVERLAP IN RESPONSE
TO A LOCALIZED PERTURBATION

A. General method

We address the response of a ballistic mesoscopic electron
system to the sudden appearance of a localized perturbation
V in terms of the Anderson overlap,4 i.e., the overlap of
many-particle ground states before and after the perturbation
is applied.

We label single-particle levels and wave functions of the
initial (unperturbed) Hamiltonian H, by &, and ¢y, respec-
tively, k=1, ...,N. For our systems of interest, they are in-
troduced in Sec. II. The attractive perturbation V localized at
7, is given by a rank-one matrix

vn k> -
<()Dk|v|(Pq> = :‘Pk(rc)()pq(rc)’ k’q = 17 oo sN (10)

with the asymptotic mean density of states per unit area and
spin orientation v=m*/(27h?). The parameter v, quantifies
the perturbation strength per mean-level spacing and is a
measure for the average coupling strength. The quantity
v,A|(7.)]* can be considered as an effective coupling
strength of the state k at the position 7, (A denotes the system
area). Such a contact type potential is widely employed in
the description of the orthogonality catastrophe and x-ray
edge problem.3710:12.19-22

We refer to the levels and wave functions of the final
(perturbed) Hamiltonian Hy+V as \, and ,, respectively,
k=1,...,N. The final energy spectrum is determined by the
implicit equation’-?3

N x o N
12 qu(rc) ()Dk(rc)
vio MNe—&e

1
0=—- (11)
Un

Final levels are roots of a rational function with N poles at
€1,...,ey. Except for the lowest final level \; which, for
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FIG. 1. (Color online) (a) Unperturbed and (b)—(f) perturbed
wave functions of the rectangular billiards. The perturbation is
placed in the center of the (red) circle. v,=-5.0, N=2000, and
a=1.0276.

sufficiently strong perturbations, drops well below the lowest
initial energy level giving rise to the formation of a so-called
bound states, final levels are restricted by g;,_; <\, <eg,. Fig-
ure 1 illustrates the typical response of wave functions to the
appearance of a strong, localized perturbation.

We consider perturbed and unperturbed many-particle
ground states W,(M) and ®y(M), respectively, that are given
by Slater determinants composed of the M perturbed and
unperturbed single-particle states, respectively, with the low-
est energy. The many-particle overlap

A =(W(M)|Dy(M)) (12)
is given by the determinant of an (M X M) matrix (Ref. 19)
A= det(<¢x|€0k>)x,k=1,...,M- (13)

In the case of a rank-one perturbation, cf. Eq. (10), the
squared modulus of the overlap of the perturbed and unper-
turbed many-particle ground states depends, remarkably,
only on the unperturbed and perturbed single-particle energy
levels'®? and can be expressed as

. Ni—e)(e~\)
= ,q, gﬂ M) Y

We refer to this quantity as the Anderson overlap in the fol-
lowing. We consider systems at half filling M/N=1/2. Since
the perturbation potential V does not result in a coupling of
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spins, we neglect the electron spin. Both independent spin
components can be treated in the same manner.

B. Anderson overlap in the presence of degeneracies

Equations (11) and (14) do not apply without modifica-
tions if the initial energy levels are degenerate. This is the
case, e.g., in the circular billiards without external magnetic
field: Levels of the circular billiards are either nondegenerate
and are related to wave functions with zero angular momen-
tum or are twofold degenerate and can be related to pairs of
wave functions with angular momentum of opposite sign, cf.
Eq. (3).

We consider a localized perturbation V placed at
(x,y.)=r.(cos ¥,,sin 9,) and choose the coordinate system
such that ¥,=0. The antisymmetric wave functions ¢} intro-
duced in Eq. (5) vanish at the position of the perturbation
and are therefore eigenfunctions in absence and presence of
the perturbation. Unperturbed degenerate energy levels are
split by the perturbation such that the degenerate initial lev-
els persist in presence of the perturbation as nondegenerate
levels. The other final energy levels are determined by Eq.
(11) summing only over symmetric wave functions ¢;.

Hereafter, we inspect the Anderson overlap of Eq. (12) in
presence of degenerate energy levels. It is convenient to in-
troduce fermionic creation and annihilation operators. Par-
ticles in initial states with defined angular momentum ¢
[Eq. (3)] are created by ck, particles in initial states with an
even (s) or odd (a) parity ¢}* [Eq. (5)] are created by ¢} ay
and particles in final states ¢, are created by d

In the following, we fix the number of electrons M such
that, in the ground state

|Do(M)) = clychy el s ... cl]0), (15)
the highest initial level is twofold degenerate and fully occu-
pied. In this case, the Anderson overlap [(Wy(M)|Dy(M))|? is
determined by Eq. (14) taking only initial and final levels
into account that belong to symmetric wave functions.

We obtain the Anderson overlap of a system with M —1
electrons and the initial state

|y(M ~ 1)) = CL—ch—ch—3 CHO) (16)

by the following consideration: We use the relation between
initial creation operators

CA,}L = l\F(CM—CM D (17)

and recapitulate that initial antisymmetric states solve the
final Schrodinger equation, too,

diy=chr. (18)

The Anderson overlaps of the M —1 and M-electron systems
are related by
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(Wo(M = 1)|D(M - 1))]?
=|0ld; ... dyiclyy - c]|0)

=|0ld; ... dy_rdycifciy, - cj|0)

1
= 5|<0|d1 coodyadygch = e ek el|o)?

(o (M)|Do(M))[. (19)

N | =

We note that the initial many-particle ground state of
M —1 electrons is not unique due to the two dimensionality
of the eigenspace of the degenerate level. Therefore we con-
sider an average over two independent initial many-particle
ground states of M —1 electrons. Instead of

|Do(M = 1)) =chy_iChyaCiss .- c}]0), (20)
one may consider
|D3(M - 1)) =cAich ochy s ... cl]0) (21)
or
|DH(M - 1)) = ci}_ch_ch_3 cHO). (22)

Writing the Anderson overlap [A[*=tr(Py P, ) as an expec-
tation value of the projection operator Py, =|Wo)}Wo| and
substituting the pure state Pg, =|®)X®Py| by the mixed state

1
p(M-1)= E(PIIJS(M—I) + P@g(M_n), (23)

we get the counterpart of Eq. (19)

1
[ Py, -np(M — 1)] = Etr(P wom-1Pasm-1)

1
= Etr(P\lfO(M)P by(M)- (24)
According to Eq. (19), which applies to specific initial many-
particle states [Eq. (16)], and according to Eq. (24), which
holds for a certain average [Eq. (23)], the Anderson overlap
of a system with M —1 electrons, where the highest occupied
energy level is twofold degenerate but incompletely filled, is
reduced by a factor of 1/2 compared to the Anderson overlap
of a system with an additional electron.

A similar approach can be formulated for a system with
an g-fold degenerate initial level where g—1 energy eigen-
functions are not affected by the localized perturbation. It is
outlined in the Appendix A. As a result, the factor 1/2 in Eq.
(24) has to be substituted by 1/g. The behavior was con-
firmed in a numerical study of AOC in quantum dots with
parabolic confinement potential.!!

C. Bulklike model and reference overlap A,

For later comparison to the mesoscopic case, we intro-
duce the so-called bulklike model,® defined by (i) equidistant
energy levels and (ii) uniform wave-function intensities,
|@i/?=1/A, with A being the area of the system. We refer to
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the Anderson overlap of this bulklike (reference) system as
|A,J%. Tt is well known that |A,|* follows a power law in the
number of particles in the system and tends to zero in the
thermodynamic limit, which is known as the Anderson or-
thogonality catastrophe.*

Ohtaka and Tanabe give the power law in the form!°

2
|4y = CoNifr'™ (25)

with the effective number of particles N in the band that is
given by band width times density of states at the Fermi level
and some constant C,,. Note that the exponent is determined
by the phase shift §y(er) at the Fermi energy that is induced
by the localized perturbing potential.

Below we will use |A,|? as obtained from Eq. (14) to scale
(normalize) the overlaps of individual mesoscopic systems in
order to remove their dependence on the number of particles
in the system.

IV. RESULTS

In this section, we discuss probability distributions of
Anderson overlaps in ballistic mesoscopic systems. Initially,
we consider rectangular and half-circular billiards as inte-
grable examples. We compare our results to both the bulklike
case and a generic chaotic system. In the second section, we
study the circular billiards, again in comparison to the cha-
otic case, and focus on the impact of level degeneracies on
the overlap distribution.

A. AOC and overlap distributions in rectangular
and half-circular vs chaotic quantum billiards

We start our studies with the two-dimensional rectangular
quantum dot with hard walls.>* Mesoscopic fluctuations be-
come evident as the number of electrons in the system (cor-
responding to a size variation of experimental samples) is
varied from M=50-1000, cf. Fig. 2. The position of the
localized perturbation strongly influences the effective cou-
pling strength of wave functions, cf. Egs. (10) and (11). We
average out this spatial dependence by considering 5000 ran-
dom positions of the perturbation. The residual sensitivity of
the overlap on the particle number is shown by the open
symbols in Fig. 2 for both a weak and a strong perturbation.
The still significant fluctuations indicate that the distribution
of electron levels near the Fermi level plays a special role.>!0
Averaging furthermore over a small range of particle num-
bers AM, ie., M=(M)-AM, ... ,(M)+AM, results in a
smooth dependence of the mean overlap on the mean particle
number. We will employ such an averaging procedure
throughout the paper.

Evidently, AOC is incomplete and the overlap is larger
than zero for this finite number of particles well below the
thermodynamic limit. Comparing the average mesoscopic
Anderson overlap to the bulklike reference value, denoted by
filled symbols and solid lines in Fig. 2, respectively, makes
clear that both values coincide for strong perturbations
(lower curve). For weak perturbations (upper curve), how-
ever, the effect of the orthogonality catastrophe is more pro-
nounced in the rectangular mesoscopic system.
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FIG. 2. (Color online) Dependence of the Anderson overlap |A|?
on the particle number M for a weak perturbation, v,=-0.3 (red
squares) and a strong perturbation, v,=-5.0 (green diamonds) in
the case of the rectangular dot as log-log plot. Solid lines indicate
the power law for the Anderson overlap in the corresponding bulk-
like system. Mesoscopic fluctuations (open symbols) are clearly
visible although each value denoted by an open symbol is obtained
by averaging over at least 5000 positions of the localized perturba-
tion for every particle number. The filled symbols (with vertical
error bars denoting the standard deviation) are obtained when addi-
tionally averaging the Anderson overlap over a certain range of
particle numbers AM (corresponding to experimental systems of
slightly varying size), AM=10 for the lowest (M)=50 and
AM =30 otherwise. Whereas these values fit the power law of the
bulklike model in the case of strong perturbations, a clear deviation
occurs for weak perturbations. Here, AOC is on average stronger in
the mesoscopic system.

In order to remove the overall M dependence of the
Anderson overlap so that a comparison of mesoscopic sys-
tems with different electron numbers M becomes meaning-
ful, we scale the overlap |A|* of the mesoscopic system by
the overlap |A,|* of the corresponding bulklike system. Dis-
tributions of scaled Anderson overlaps p(|A/A,|?) in the rect-
angular quantum dot are shown in Figs. 3(a) and 3(b) for a
weak and a strong perturbation, respectively. Except for
boundary effects, that we discuss below, they are, for one and
the same system type, practically independent of the mean
particle number (M). All distributions exhibit a maximum
near |A/A,|>=1, a peak at zero with its size depending on
the perturbation strength and the confinement geometry, and
smaller peaks at large scaled overlaps that depend on the
particle number (M) and are a result of boundary effects. We
do not find a pronounced dependence of the scaled overlap
distribution on the aspect ratio of the rectangle L,/L,= Va.
Using, e.g., a=\2 instead of the Golden ratio a=(1++5)/2
employed in Fig. 3, yields very similar distributions. Only
for ratios close to an integer, e.g., 1.000029 or 4.0000033, we
observed clear deviations due to the presence of (nearly) de-
generate levels.

The small side peaks beyond the main maximum arise
from events where the perturbation is placed near the system
boundary. Recalling that all single-particle wave functions
tend to zero near the hard wall, clarifies that the closer the
perturbation is placed to the boundary, the smaller is the
effective coupling of single-particle wave functions and the
larger is the Anderson overlap constrained by the upper limit
one. The scaling by the overlap of the bulklike system pro-
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FIG. 3. (Color online) Probability distribution of scaled Ander-
son overlaps p(|A/A,)?) for a rectangular quantum dot in the
Golden ratio and a half-circular dot. Particle numbers (M)=200 and
800 are considered for a weak perturbation v,=—0.3 in panels (a) as
well as for a strong perturbation v,=—5.0 in panel (b); the inset
shows the tails with side peaks representing an M-dependent
boundary effect. Apart form that, the distributions are independent
of the particle number. At least 10 000 positions of the perturbation
are sampled, AM=45. The chaotic case (RMT, COE) is shown for
comparison. The differences between the integrable and the chaotic
system are small but characteristic and result in smaller average
overlaps, shown by arrows for (M)=200, in the integrable systems
than in the chaotic system for weaker perturbation strengths.

duces the side peaks at values =~1/|A,|*>. Once such events
are excluded from the averaging, those peaks disappear. In-
creasing the mean number of electrons M, reduces the im-
pact of this boundary effect, which can be seen in Figs. 3(a)
and 3(b).

Besides the data for the rectangular billiards, Fig. 3 shows
the overlap distributions of half-circular billiards and of cha-
otic mesoscopic systems modeled by random-matrix theory
(RMT) (circular orthogonal ensemble, COE), which was pre-
viously reported.>'® The presence of system boundaries is
not included in the random-matrix description of chaotic sys-
tems; this has to be taken into account when comparing the
generic chaotic case and the integrable billiard systems.

Apart from the side peaks, the overlap distributions of
both integrable billiards systems and the generic chaotic sys-
tem are rather similar with small deviations: (i) The probabil-
ity density for vanishing Anderson overlaps is the lowest in
the chaotic system. The value in the half circle is much
higher than that in the rectangle. (ii) The distribution for the
half disk falls below that of the rectangle before the main
maximum, and above it beyond. This holds for both a weak
and a strong perturbation. Below the main maximum, the
chaotic distribution is close to the distribution of the half
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disk, if the perturbation is weak, and close to the distribution
of the rectangle, if the perturbation is strong. The chaotic
model shows the highest probability density above the main
maximum in the tail of the distribution for the weak pertur-
bation.

Mean values of the scaled Anderson overlap in the rect-
angle and half disk fall below the mean value of the chaotic
system which are smaller than one for a weak perturbation,
cf. Figs. 2 and 3(a). If the perturbation is strong, all mean
values are close to one. A certain understanding for this be-
havior is provided using the so-called range-one
approximation®!? where the same ordering of the overlaps is
seen.?> A detailed study of average Anderson overlap values
is provided in Appendix B.

Placing a point scatter in a rectangular quantum billiards
induces so-called wave chaos,?®-2® whereas a chaotic system
is expected to remain chaotic. This statement might suggest a
stronger effect of a localized perturbation, measured in terms
of the Anderson overlap, in the rectangular billiards than in a
chaotic system. Our data show, however, that this difference
is very small and only relevant for small and modest pertur-
bation strengths.

The differences in the distributions at vanishing Anderson
overlap can be understood as follows. For the chaotic case'?
(COE), it was stated that the distribution of scaled overlaps
exhibits a peak at |[A/A,|*=0 that is related to the divergence
of the Porter-Thomas distribution for the wave-function in-
tensities / at /=0. The argument applies here as well. The
probability of finding a small intensity / € [0, ], 0< 5<1 is
highest in the half disk followed by the rectangular billiards
and the chaotic system.” The strong decrease in the Ander-
son overlap due to fluctuating and in particular small wave
intensities can be qualitatively understood by the following
argument: Let us assume an initial ground state of M elec-
trons and the perturbation placed at 7.. Let us further assume
that the single-particle wave function at the Fermi level van-
ishes, ¢,,(7.)=0, thus, ¢,, remains an eigenstate with energy
gy for every perturbation strength. In the calculation of the
perturbed energy levels Eq. (11), it simply drops out of the
sum. Now, we reduce the parameter v, continuously starting
at v,=0. The perturbed energy levels \, depend on v, in
general, cf. Eq. (I11), and it is possible that the perturbed
level Ny, (v,), originating from the unperturbed level gy, ,
crosses the level Ny, =g,, at some v,. At the crossing v, we
have to resort the levels (and states) such that N, <\,
Beyond the crossing v, <v, we obtain

(Wlew) =0 for k=1,....M. (26)

This means that one column of the matrix, whose determi-
nant gives the Anderson overlap Eq. (12), contains as entries
only zeros, thus

(Wo(M)|Dy(M)) =0. (27)

If we now replace the assumption ¢u,(7.)=0 by
lop(7.)|?<<1/A, we get an avoided level crossing instead of
the level crossing, but the many-particle overlap still drops
considerably. An example is pictured in Fig. 4.
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FIG. 4. (Color online) As v, is reduced from v,=0, an avoided
level crossing appears induced by a small intensity |¢,,(7.)|>. The
many-particle overlap drops strongly since the Fermi level is in-
volved in the avoided level crossing. Shown is an example of the
half-circular billiards.

B. AOC in circular quantum billiards: Impact of level
degeneracies

We now investigate circular ballistic quantum dots as a
third integrable system. Our focus will be on the impact of
level degeneracies on the many-particle overlap distribu-
tions. For comparison, we also consider the circular dot in
the presence of a magnetic field where level degeneracies are
lifted.

Figure 5 shows distributions of scaled Anderson overlaps
in circular billiards exemplarily in the case of a weak pertur-
bation. Again, they are similar for all considered particle
numbers (M)=100, 200, and 800. The new feature of the
distribution is a central maximum. Its position is at about one
half of the Anderson overlap value of the maximum near
|A/A,>=1 (that is familiar from all previously considered
cases). The factor of 1/2 and the double-peak structure are a
direct consequence of the presence of twofold degenerate
levels and can be understood from Eq. (19). This equation
states that the overlap of the system with M—1 particles,
corresponding to a single occupation of a twofold degenerate
initial level, is a factor of two smaller than the overlap of the
system with M particles, i.e., a fully occupied degenerate
initial level. In other words, the distribution in the presence
of twofold degenerate levels can be approximately thought
of as obtained by superposing that obtained with fully occu-
pied levels plus a copy of the latter distribution stretched by
a factor of 1/2.

A more qualitative argument can be given in terms of the
available phase space: A single electron on a twofold degen-
erate (or nearly degenerate) level can, in the course of the
sudden perturbation, “rechoose” on which of the two levels it
wants to be. This amounts to a factor of 1/2 in the corre-
sponding Anderson overlap. Generalization to g-fold degen-
erate levels is straightforward and results in a factor 1/g.
Applying the picture of a two-level system, we get the fol-
lowing reasoning: A singly occupied initially degenerate
level is split by a sudden perturbation. Without additional
knowledge about the initial state, we expect with a probabil-
ity of 1/2 to find the particle in the state with the lower
energy finally.

Level degeneracies can be removed by breaking the re-
sponsible system symmetries. In the case of the circular bil-
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FIG. 5. (Color online) Distributions of scaled overlaps
p(|A/A,%) in circular billiards in the case of a weak perturbation
v,=-0.3. (a) Without magnetic field, twofold degenerate levels re-
sult in the presence of two pronounced maxima in addition to the
peak at vanishing overlap. The central maximum is a distinct dif-
ference to the behavior of systems without level degeneracies. The
average overlap is therefore considerably reduced compared to the
billiards without level degeneracies (Fig. 3). The positions of the
maxima are related by a factor of 1/2 corresponding to the inverse
of the degree of degeneracy. (b) Turning on an external magnetic
field splits degenerate levels and results, eventually, in the disap-
pearance of the central peak. At B=3.3X10~" T, overlap distribu-
tions for different particle numbers coincide, shown for (M)=200
and 600, moreover, we find very similar distributions at
B=3.3x10"2 T which indicates a saturation. We sample 10 000
positions of the perturbation and a range of particle numbers
AM=30. Note that Anderson overlaps of the circular billiards in a
magnetic field are differently distributed than those of the corre-
sponding generic chaotic systems with broken time-reversal sym-
metry described by RMT (CUE).

liards one can break the time reversal symmetry by applying
a magnetic field, or the rotational symmetry by considering,
for example, the half-circular billiards which is described in
the previous section.

The presence of a magnetic field separates levels by
€ mn—&_ma|=fiwm, with w,=eB/m" the cyclotron fre-
quency. We address the range of modest magnetic fields
where Landau levels are not yet formed. Figure 5(b) shows
distributions of scaled overlaps for systems in a finite mag-
netic field.° The degeneracy-caused double-peak structure in
the distributions disappears gradually when the magnetic
field is increased.

Remnants of the degeneracy caused central peak are still
clearly visible at B=1.6X10 T (1.6X10™* T) in Fig.
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5(b). We estimate the corresponding level splitting at the
Fermi energy compared to the mean-level spacing d for M
=170, ...,230, with the relevant azimuthal quantum numbers
m, 1=m=24, (my=10, to be |e,,—e_,.|/d=m
% 0.028(0.0028), i.e., on the order of one tenth of the mean-
level spacing. Even for this rather big splitting, the overlap
distribution is still affected by the former level degeneracies.

The comparison of the overlap distribution at
B=33X10"! T to the corresponding generic chaotic sys-
tems described by RMT (circular unitary ensemble, CUE) in
Fig. 5(b) [thick solid (yellow) line] reveals a more pro-
nounced difference in the distribution than observed for rect-
angular and half-circular quantum dots in the presence of
time-reversal symmetry. For the chaotic system, the distribu-
tion is more narrow than in the circular system. In addition,
the probability of having vanishing overlap was found to be
very small in chaotic systems with magnetic field,>!° but
remains high in the regular case with values similar to those
found without magnetic field.

V. SUMMARY AND CONCLUSION

We considered Anderson orthogonality catastrophe
(AOC) in mesoscopic ballistic systems. In contrast to the
metallic case, the finite particle numbers yield finite Ander-
son overlaps with a broad distribution. On average, the de-
pendence of the overlap on the particle number reproduces
the Anderson power law of a bulklike model for strong per-
turbations and falls slightly below the power law for weak
perturbations. Distributions of overlaps scaled by the over-
laps of a bulklike system are independent of the particle
number except for small side peaks that reflect boundary
effects that were not considered in the previously studied
chaotic case.!”

Comparing scaled overlap distributions for a rectangular
and half-circular billiards, we find only a weak dependence
on the geometrical confinement. Moreover, the scaled over-
lap distributions of the two regular systems are rather similar
to distributions of chaotic systems described by random-
matrix theory. Different statistical properties of energy levels
and wave functions, typically considered as characteristics of
integrable and chaotic quantum systems, result only to a mi-
nor degree in differences in the distributions of Anderson
overlaps. A slightly larger weight on smaller and vanishing
overlaps is found for the integrable billiards systems in the
case of a weak perturbation. The different portion of vanish-
ing overlaps originates in the different, system-dependent in-
tensity distributions of the wave functions. Altogether, we
find, that, in general, the geometry of the confinement of a
ballistic quantum dot does not affect the distribution of
Anderson overlaps remarkably. However, this changes dras-
tically in the presence of level degeneracies, such as in the
circular quantum billiards. The twofold level degeneracies of
the circular billiards lead to an additional maximum in the
probability distribution of the Anderson overlap. The posi-
tions of the additional and of the main peak are related by a
factor of about 1/2 (orl/degeneracy). This results in a con-
siderable reduction in the average Anderson overlap, i.e.,
level degeneracies imply a strong enhancement of the or-
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thogonality catastrophe. Besides the circular quantum dot
studied here, level degeneracies occur also, e.g., in parabolic
quantum dots and carbon nanotubes.

We described analytically that a system with an incom-
pletely filled twofold degenerate level possesses half the
Anderson overlap of the system with an additional electron.
The decrease by the factor 1/2 is caused by a nontrivial ker-
nel of the rank-one perturbation restricted to the two-
dimensional eigenspace of a degenerate level, more physi-
cally, it reflects a phase-space factor. The generalization to
the g-fold degenerate case is straight forward, cf. Appendix
A.

Lifting the level degeneracies of the circular billiards by
applying an external magnetic field, gradually dissolves the
degeneracy peak in the overlap distribution. Its trace can be
followed up to a level splitting at the Fermi energy on the
order of one tenth of the mean-level spacing. Provided that
the degeneracy peak is resolved in a moderate magnetic
field, the overlap distribution differs from that obtained for a
chaotic system described by random-matrix theory (CUE),
i.e., in the presence of a magnetic field (broken time-reversal
symmetry) we find a stronger geometry dependence of the
Anderson overlap.
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APPENDIX A: MANY-PARTICLE OVERLAP
AND G-FOLD DEGENERACIES

We consider the application of a rank one perturbation V
of Eq. (10) to a noninteracting electron system H, with an
g-fold degenerate single-particle level. V, restricted to the
g-dimensional eigenspace, possesses an g—1 dimensional
kernel. As a consequence, on an average, the squared modu-
lus of the overlap of the unperturbed and perturbed many-
particle ground states of a system with a singly occupied
degenerate initial level is reduced by 1/g compared to the
Anderson overlap of the system with all g eigenstates of the
degenerate level being occupied.

To show this, we consider an orthonormal basis Pk and
levels g, that solve

Hooy = erpr - (A1)

k enumerates levels and j=1,...,g; counts the g, degenera-
cies of the each level. The number of states N (cutoff) is
fixed. We add the perturbation V of Eq. (10) that acts at 7,
and consider the equation

(Ho+ V)i ;= Ny jt -

We assume ¢y ;(7) #0. We construct a basis y,; in the
gr-dimensional eigenspace of &;:

(A2)
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1
, =—E (P ek s (A3)
Xk,1 Egk |<pk,(r) . 1<ij Pr.j

1

Xiej= V”|(Pk,j(7?c)|2+ |¢k’1(}7€)|2 X (@ (7)1 = @1 (F) @)
J=2,....8 (A4)
It holds for j=2,...,g;
XealXe,) =0, (A5)
(Ho+ V)X = HoXx.j» (A6)
=€1Xk,- (A7)

One may orthogonalize the g,—1 linearly independent Y, ; by
a Gram-Schmidt process, normalize and label the result x; ;
and identify
ej=xe; for j=2,....g (A8)
If V is attractive then Ny | <Ny =g, j=2,...., 8
We introduce fermlomc creation operators: Particles in
states ¢y ; J, are created by ck » particles in states ), ; are cre-
ated by ak and particles in states ¢, ; are created by dk i
c,i and a,t ; are related by unitary (g X gr)-matrices

(u )j J'=1,...¢ 8k

J

Sk
AN
= 2ty

J'=1

(A9)

i = X jr i) (A10)
We define the initial and final ground states of M =E’,§¥1gk
particles
—
|®o(M)) = Chypgy, "

c} 110y, (A11)

[Wo(M)) =y, g, - di,1]0). (A12)

The initial ground state with M +1 particles is ambiguous,
the final state with M+ 1 particles is unique

|[DYM + 1)) = . |Do(M)), (A13)

WM+ 1) =d.

Wo(M)) (A14)
with k*=kj,;+ 1. The many-particle overlap of ground states
with M+1 particles assuming the initial state ¢+ ; being
occupied yields
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(Wo(M +1)|Ph(M + 1))
= [(Wo(M)|dje 1y | Do(M))?

= (Wo(M)\die 1y 5 ... dge g e

P 2
Y L Dy(M))]

2

.
= |“§1

XUV M| dp .. e gy - e | Po(M))

= |u§1|2|<q’0(M)|dk*’1 . dk*’gk*clt**gk* .. CZ*,ZC;:*,] (Do(M)>|2

= [uly PP (M + gj)

Do(M + g3))|* (A15)

using Eqs. (A8) and (A9). Averaging by means of the density
matrix

8k*

1
pM+1)=—2 Poj 1)
8k* j=1

using Payj(+1)= |D)(M+ 1)) D)(M +1)] yields

(A16)

1
tl Py r1yp(M + 1)] = g—tr[P W (Mg Py (Mrge))-
k*

(A17)

APPENDIX B: MEAN-SCALED ANDERSON
OVERLAPS

Whereas we focused on overlap distributions in the body
of the paper, we add here a detailed discussion of mean-
scaled Anderson overlaps (|A/A,|?) for the rectangular and
half-circular billiards as well as for the COE, see Fig. 6. Data
are obtained by ensemble averaging as described in Sec. IV.
We study the mean values as a function of the perturbation
strength that we parameterize by the phase shift &, of
the bulklike system at the Fermi level, tan y=-mv, for
M/N=1/2.192 We find, for both billiard systems, a nonmo-
notonous dependence of (|A/A,|*) on &. {|A/A,[?) falls be-
low 1 except for very strong perturbations and exhibits a
local minimum at about &=m/4 (v,~-0.3). The same
qualitative behavior is found for the COE, although the av-
eraged Anderson overlap of this chaotic system is generally
closer to the bulklike reference value, cf. Fig. 6. We thus
observe, on average, an enhancement of the AOC in the in-
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FIG. 6. (Color online) Mean-scaled Anderson overlap (JA/A,|?)
in dependence on the phase shift , at the Fermi level. Shown are
data for the rectangular billiards, half-circular billiards, and a ge-
neric chaotic system (COE). We sample at least 12 000 positions of
the perturbation in the billiards, AM=45. The mean-scaled Ander-
son overlap in range-one approximation (|A,/ Ab|2> is also shown.
Within this approximation, {|A;/A,|?) can be determined by means
of an explicit integral equation (points “explicit”), see text for de-
tails. Error bars indicate numerical integration errors.

tegrable billiards, even in the absence of level degeneracies.

In Fig. 6, we also compare these results to mean-scaled
Anderson overlaps (|A;/A,|*) obtained in the so-called
range-one approximation, introduced in Refs. 3 and 10. This
approximation allows one to derive an explicit equation for
p(|A/A,)?) in dependence on the level spacing distribution
and intensity distribution of wave functions; in Fig. 6 we
refer to the latter approach as explicit method in contrast to
the ensemble averaging. Regarding the explicit method, we
describe the rectangular billiards by means of the level-
spacing distribution p,(s)=exp(—s) (Poisson) and a closed
expression for the intensity distribution.?” Correlations at the
system boundary are neglected here. In the case of small and
moderate perturbation strengths, the range-one approxima-
tion reproduces the relative ordering of mean-scaled Ander-
son overlaps of the rectangle, the COE, and the bulklike
system.
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